Predictive Maintenance Toolbox™ Release Notes

7

MATLAB

¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Predictive Maintenance Toolbox™ Release Notes
© COPYRIGHT 2018-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

R2021a

Diagnostic Feature Designer: Import data using an updated interface
with more flexible options 1-2

Diagnostic Feature Designer: Preselect signals and spectra to process

.. 1-2
Diagnostic Feature Designer: Use tooltips to obtain the history of
processing and data sources for derived variables 1-2
Ensemble Datastores: Use the subset function to extract ensemble
members that you specify from an existing ensemble into a new
ensemble 1-2
Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATILAB Coder for the prediction, update, and restart of an RUL
prediction that is based on a degradationmodel 1-3
Live Editor Tasks: Interactively define fault frequency bands and extract
spectral metrics 1-3
RUL Examples: Predict RUL using artificial intelligence 1-3
R2020b
Bug Fixes
R2020a

Diagnostic Feature Designer: Generate MATLAB code in the app 3-2

iii

iv

Contents

R2019b

Live Editor Tasks: Interactively perform phase space reconstruction and
extract signal-based condition indicators 4-2

Spectral Analysis: Define frequency bands and extract spectral features

.. 4-2
Prognostic Ranking in Diagnostic Feature Designer: Rank features to
determine best indicators of system degradation in Diagnostic Feature
Designer 4-3
Machine-Specific Rotation Speeds: Filter TSA signals using machine-
specific rotation speeds in Diagnostic Feature Designer 4-3
generateSimulationEnsemble: Control display of simulation progress
when generating a simulation ensemble 4-3
R2019a
Diagnostic Feature Designer: Interactively extract, visualize, and rank
features from measured or simulated data for machine diagnostics and
Prognostics e 5-2
Gear Condition Metrics: Extract standard gear condition indicators from
time-synchronous averaged signals 5-2
fileEnsembleDatastore: Specify list of ensemble datastore file names ... 5-2
R2018b
Feature Selection Metrics: Evaluate features to determine best indicators
of system degradation and improve accuracy of remaining useful life
predictions 6-2
Features for Rotating Machinery: Extract the residual, difference, and
regular signals from a time-synchronous averaged signal to generate
diagnostic feature 6-2
fileEnsembleDatastore Object: Read all variable types from ensemble
member while loading fileonlyonce 6-2
Ensemble Datastore Objects: Read multiple ensemble members in one
operation 6-2

fileEnsembleDatastore Object: Create ensembles of files with multiple file
extensions 6-3

Functionality being removed orchanged 6-3
DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn

properties of fileEnsembleDatastore will be removed 6-3
currentValue syntax of predictRUL not recommended 6-4
R2018a
Survival, similarity, and time-series models for remaining useful life
(RUL) estimation 7-2
Time, frequency, and time-frequency domain feature extraction methods
for designing condition indicators 7-2
Managing and labeling of sensor data imported from local files, Amazon
S3, Windows Azure Blob Storage, and Hadoop Distributed File System
.. 7-2
Managing and labeling of simulated machine data from Simulink models
.. 7-2
Examples for developing predictive maintenance algorithms for motors,
gearboxes, batteries, and other machines 7-2

R2021a

Version: 2.3
New Features

Bug Fixes

R2021a

1-2

Diagnostic Feature Designer: Import data using an updated interface
with more flexible options

You can now import data using a single dialog box that provides increased flexibility. Use New
Session to initiate the data import process. New Session replaces Import Data, and initiates a
process that replaces the previous multiple dialog boxes with a single dialog box that allows you to
perform all your import specifications in one place. Within this dialog box, you can now do the
following:

* Select a single data source from your workspace and view all the workspace variables that have
the same internal variables and member format. Use this option when you are importing multiple
data sets. The app simplifies your task by displaying the names of all the compatible data sources
that can be combined with your initial selection.

* Import power and order spectra from a table. Previously, you needed to import spectral data in
an idfrd object.

* Generate, rather than import, a virtual independent variable (IV) such as time or sample index.
This option is the default when your import data does not include time or another IV.

For more information, see “Import Data into Diagnostic Feature Designer”.

Diagnostic Feature Designer: Preselect signals and spectra to process

You can now preselect the variable in the data browser that you want to use for data processing and
view compatible processing options. Previously, you could use your data browser selection only for
plotting. For more information, see “Process Data and Explore Features in Diagnostic Feature
Designer” and the Data Processing parameter description in Diagnostic Feature Designer.

Diagnostic Feature Designer: Use tooltips to obtain the history of
processing and data sources for derived variables

When you perform a sequence of operations in the app, you produce a set of derived variables, each
of which is a unique result of the processing history and source variables. You can now obtain that
history from a tooltip that appears when you point to a variable name in the data browser. Previously,
the variable names encapsulated the processing history, and a multistep processing sequence
resulted in a long variable name. For more information, see “Process Data and Explore Features in
Diagnostic Feature Designer”.

The R2021a history tracking process is fully compatible with saved sessions that use the previous
variable-naming approach. If you open a session that you saved prior to R2021a, the app treats each
saved variable as an original data source and preserves the original concatenated name as a single
source name. When you derive additional variables, the app preserves the original names in their
entirety, but appends processing steps to the new variable name and populates the tooltip according
to the R2021a approach.

Ensemble Datastores: Use the subset function to extract ensemble
members that you specify from an existing ensemble into a new
ensemble

You can now create a new ensemble datastore from a subset of an existing ensemble datastore by
extracting the ensemble members that correspond to the indices you specify.

Use subset when you want to perform ensemble operations on a specific ensemble member or group
of ensemble members, and when using a sequence of read commands with the source ensemble does
not provide the ensemble members that you want to process.

For more information, see subset.

Remaining Useful Life (RUL) Prediction: Generate C/C++ code using
MATLAB Coder for the prediction, update, and restart of an RUL
prediction that is based on a degradation model

You can now use MATLAB® Coder™ functionality to generate C/C++ code using a
linearDegradationModel or an exponentialDegradationModel. Code generation is supported
for the predictRUL, update, and restart functions.

To generate code for a prediction algorithm using a degradation model, use the new
saveRULModelForCoder command to save the model for code generation. Then, use the
loadRULModelForCoder to load the model in your entry-point function. If you update the model at
run time, you can use the new readState and restoreState commands to preserve the updated
model state. For examples, see:

* “Generate Code for Predicting Remaining Useful Life”
* “Generate Code that Preserves RUL Model State for System Restart”

Live Editor Tasks: Interactively define fault frequency bands and
extract spectral metrics

Use the new Extract Spectral Features Live Editor task to interactively define fault frequency
bands of interest and extract spectral metrics like peak amplitude, peak frequency, and band power
from power spectrum data, without writing code. You can define and configure bearing, gear mesh,
and custom fault frequency bands from which targeted spectral metrics of the power spectrum data
can be obtained. The task generates a plot of the frequency bands and power spectrum data that lets
you interactively explore the effects of changing parameter values and options. The task also
automatically generates code that becomes part of your live script.

For more information, see Extract Spectral Features. For an example, see “Analyze Gear Train Data
and Extract Spectral Features Using Live Editor Tasks”.

RUL Examples: Predict RUL using artificial intelligence

New examples illustrate RUL prediction using techniques of machine learning and deep learning.

» “Battery Cycle Life Prediction From Initial Operation Data”
* “Remaining Useful Life Estimation using Convolutional Neural Network”

1-3

R2020b

Version: 2.2.1

Bug Fixes

R2020a

Version: 2.2
New Features

Bug Fixes

R2020a

3-2

Diagnostic Feature Designer: Generate MATLAB code in the app

You can now generate MATLAB code in the app to automate data processing, feature extraction, and
feature ranking computations that you initially performed interactively. Apply this code to any data
set that includes the same variables as the data set that you imported into the app when you
generated the code. For example, you can use this code to compute a feature set for a larger set of
measurement data than the measurement data set that you worked with in the app, or to update the
feature set if you obtain new data.

For more information, see Automatic Feature Extraction Using Generated MATLAB Code.

https://www.mathworks.com/help/releases/R2020a/predmaint/ug/automatic-feature-extraction-using-generated-matlab-code.html

R2019b

Version: 2.1
New Features

Bug Fixes

R2019b

4-2

Live Editor Tasks: Interactively perform phase space reconstruction
and extract signal-based condition indicators

Use new Live Editor tasks to perform phase space reconstruction and to extract the approximate
entropy, correlation dimension, and Lyapunov exponent without writing code. The tasks can generate
plots that let you interactively explore the effects of changing parameter values and options. They
also automatically generate code that becomes part of your live script.

In R2019b, Predictive Maintenance Toolbox™ includes four tasks:

* Reconstruct Phase Space — Reconstruct the phase space with specified or automatically
computed lag and embedding dimension

+ Estimate Approximate Entropy — Estimate the regularity of a nonlinear time series

* Estimate Correlation Dimension — Estimate the chaotic signal complexity of a nonlinear time
series

+ Estimate Lyapunov Exponent — Estimate the rate of separation of infinitesimally close
trajectories

To use the tasks in the Live Editor, on the Live Editor tab, in the Task menu, select a task.
Alternatively, in a code block in a live script, begin typing the task name and select the task from the
suggested command completions. For an example of using multiple Live Editor tasks in a workflow,
see Reconstruct Phase Space and Estimate Condition Indicators Using Live Editor Tasks.

For more information about Live Editor tasks generally, see Add Interactive Tasks to a Live Script
(MATLAB).

Spectral Analysis: Define frequency bands and extract spectral
features

Faults in electrical motor and rotating machinery components manifest in the spectrum of the motor
current or in drivetrain vibration signals. By analyzing spectral patterns (such as the peak amplitude
or band power) within certain characteristic frequency bands of the signal spectrum, various types of
component faults can be detected or their degradation monitored. Predictive Maintenance Toolbox
offers the following four new commands for generating spectral metrics within specified frequency
bands:

+ faultBands — Define fault frequency bands around characteristic fault harmonics and sidebands
within the frequency range of the signal spectrum. For more information, see faultBands.

* bearingFaultBands — Construct frequency components that define bearing faults in the outer
and inner race, rolling element, and cage of a bearing. For more information, see
bearingFaultBands.

* gearMeshFaultBands — Construct frequency components that define gear mesh faults. For
more information, see gearMeshFaultBands.

+ faultBandMetrics — Extract spectral features like peak amplitude, peak frequency, and band
power from a signal spectrum using the fault frequency bands obtained using one the above
commands. For more information, see faultBandMetrics.

For an example that demonstrates the use of motor current signature analysis (MCSA) to identify
gear faults, see Motor Current Signature Analysis for Gear Train Fault Detection.

https://www.mathworks.com/help/releases/R2019b/predmaint/ref/reconstructphasespace.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimateapproximateentropy.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimatecorrelationdimension.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/estimatelyapunovexponent.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/reconstruct-phase-space-and-estimate-condition-indicators-using-live-editor-tasks.html
https://www.mathworks.com/help/releases/R2019b/matlab/matlab_prog/add-live-editor-tasks-to-a-live-script.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/bearingfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/bearingfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/gearmeshfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/gearmeshfaultbands.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/faultbandmetrics.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/motor-current-signature-analysis-for-gear-train-fault-detection.html

Prognostic Ranking in Diagnostic Feature Designer: Rank features to
determine best indicators of system degradation in Diagnostic
Feature Designer

You can now use the monotonicity, trendability, and prognosability methods to determine which
features are the best indicators of system degradation and contribute the most to accurately
predicting remaining useful life (RUL). These methods were first introduced as feature metrics for
the command line in R2018b. Use these methods when you have system run-to-failure data to
determine which condition indicators best track the system degradation process.

To access these methods once you have calculated features, on the Feature Ranking tab, click
Prognostic Ranking. To access one of the ranking methods that were previously available in the
app, on the Feature Ranking tab, click Classification Ranking.

For more information on prognostic ranking in the app, see the Prognostic Ranking parameter
description in Diagnostic Feature Designer.

For more information on the prognostic RUL metrics, see monotonicity, trendability, and
prognosability.

Machine-Specific Rotation Speeds: Filter TSA signals using machine-
specific rotation speeds in Diagnostic Feature Designer

You can now compute machine-specific rotation speeds when you perform time-synchronous
averaging (TSA). Apply these speed values when you filter the resulting TSA signals. Previously, you
could specify only one constant rotation speed value when you filtered TSA signals. Use this approach
to tune the filtered signal more accurately for each TSA signal when their individual rotation speeds

vary.
For an example showing how to work with individual RPM values, see Isolate a Shaft Fault Using
Diagnostic Feature Designer.

generateSimulationEnsemble: Control display of simulation progress
when generating a simulation ensemble

You can now control whether generateSimulationEnsemble displays a simulation progress line in
the MATLAB command window. Previously, generateSimulationEnsemble always displayed
progress. To disable the progress display, set the ShowProgress name-value pair argument to
false.

For more information, see generateSimulationEnsemble.

4-3

https://www.mathworks.com/help/releases/R2019b/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/monotonicity.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/trendability.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/prognosability.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/isolate-a-shaft-fault-using-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ug/isolate-a-shaft-fault-using-diagnostic-feature-designer.html
https://www.mathworks.com/help/releases/R2019b/predmaint/ref/generatesimulationensemble.html

R2019a

Version: 2.0
New Features

Bug Fixes

R2019a

5-2

Diagnostic Feature Designer: Interactively extract, visualize, and rank
features from measured or simulated data for machine diagnostics
and prognostics

The Diagnostic Feature Designer app allows you to interactively explore and extract features from
ensemble data that contains signals, spectra, and condition labels from multiple members. The app
provides tools for visualization, analysis, feature generation, and feature ranking. You design and
compare features interactively, and then determine which features are best at discriminating between
data from nominal systems and from faulty systems.

To open the Diagnostic Feature Designer, type diagnosticFeatureDesigner at the command
line.

For more information, see Diagnostic Feature Designer.

Gear Condition Metrics: Extract standard gear condition indicators
from time-synchronous averaged signals

You can now use the gearConditionMetrics command to extract standard gear condition
indicators from a set of raw, difference, regular, and residual time-synchronous averaged (TSA)
signals.

For more information, see gearConditionMetrics and Condition Indicators for Gear Condition
Monitoring.

fileEnsembleDatastore: Specify list of ensemble datastore file names

fileEnsembleDatastore now lets you explicitly specify a list of files to include in the ensemble
datastore. Previously, you could provide only a single location folder, and the ensemble datastore
included all files at that location with a specified extension. The new functionality lets you specify a
subset of files in a folder to include, or include files from more than one folder. You can also specify
files using a wildcard character (*). To specify files to include, use the Location input argument
when you create the ensemble datastore. For more information, see fileEnsembleDatastore.

https://www.mathworks.com/help/releases/R2019a/predmaint/ref/diagnosticfeaturedesigner-app.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/gearconditionmetrics.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ug/condition-indicators-for-gear-condition-monitoring.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ug/condition-indicators-for-gear-condition-monitoring.html
https://www.mathworks.com/help/releases/R2019a/predmaint/ref/fileensembledatastore.html

R2018b

Version: 1.1
New Features
Bug Fixes

Compatibility Considerations

R2018b

6-2

Feature Selection Metrics: Evaluate features to determine best
indicators of system degradation and improve accuracy of remaining
useful life predictions

Selecting appropriate estimation parameters out of all available features is the first step in building a
reliable remaining useful life (RUL) prediction engine. Predictive Maintenance Toolbox offers three
feature selection metrics for accurate RUL prediction: monotonicity, trendability, and prognosability.
Use these metrics when you have run-to-failure data of systems to determine which condition
indicators best track the degradation process.

For more information, see the monotonicity, trendability, and prognosability reference
pages.

Features for Rotating Machinery: Extract the residual, difference, and
regular signals from a time-synchronous averaged signal to generate
diagnostic feature

You can now use the tsaresidual, tsadifference, and tsaregular commands to extract the
residual, difference, and regular signals from a time-synchronous averaged (TSA) signal, respectively.
These features detect changes in the TSA signal that are indicative of a change in the machine state.

For more information, see the tsaresidual, tsadifference, and tsaregular reference pages.

fileEnsembleDatastore Object: Read all variable types from ensemble
member while loading file only once

When you use a fileEnsembleDatastore object, use the new ReadFcn property to specify one
function for reading all ensemble variables. The read command calls this function to read all data
variables, independent variables, and condition variables that are specified in the
SelectedVariables property of the ensemble datastore.

Previously, you had to specify separate functions DataVariablesFcn,
IndependentVariablesFcn, and ConditionVariablesFcn for reading data variables,
independent variables, and condition variables, respectively. Therefore, the read operation accessed
each member file in the ensemble up to three separate times to read all selected variables. ReadFcn
increases efficiency by allowing read to read all variables in a member file in a single operation.

For more information about using the new property, see the fileEnsembleDatastore reference
page.
Compatibility Considerations

The DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
of fileEnsembleDatastore will be removed in a future release. Use the ReadFcn property instead.
For more details, see fileEnsembleDatastore.

Ensemble Datastore Objects: Read multiple ensemble members in one
operation

You can now configure both simulationEnsembleDatastore and fileEnsembleDatastore
objects to read more than one ensemble member per call to the read function. By default, calling

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/monotonicity.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/trendability.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/prognosability.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsaresidual.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsadifference.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/tsaregular.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html

read returns a single table row containing data from one ensemble member. To read multiple
ensemble members at once, set the new ReadSize property to a positive integer value. For example,
if you set ReadSize to 3, then calling read returns a three-row table containing data from the next
three ensemble members. The read operation also sets the LastMemberRead to a string vector
containing the file paths of the corresponding three files.

For more information and examples, see the simulationEnsembleDatastore and
fileEnsembleDatastore reference pages.

fileEnsembleDatastore Object: Create ensembles of files with multiple
file extensions

You can now create a fileEnsembleDatastore object to manage an ensemble of files that do not
all have the same file extension. For instance, suppose that you have some data stored in .xls files,
and some stored in .s files. You can create a fileEnsembleDatastore object for these files using a
string array of both file extensions, as follows.

[".x1ls",".xlsx"];
fileEnsembleDatastore(location,extension)

extension
fensemble

Both fileEnsembleDatastore and SimulationEnsembleDatastore objects also have a new
read-only Files property, which is a string vector containing the file names of all ensemble
members.

For more information about managing files with ensemble datastore objects, see the
fileEnsembleDatastore and simulationEnsembleDatastore reference pages.

Functionality being removed or changed

DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties of
fileEnsembleDatastore will be removed
Still runs

The DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties
of fileEnsembleDatastore will be removed in a future release. Use the ReadFcn property instead.

The ReadFcn property, introduced in R2018b, lets you specify one function to read all variable types
from your ensemble datastore. Formerly, you had to designate functions separately for data variables,
independent variables, and condition variables. An advantage of using ReadFcn is that the read
operation accesses each member file only once to read all the variables. With separate functions for
each variable type, read opens the file up to three times to read all variable types. Thus, designating
a single ReadFcn is a more efficient way to access the datastore.

Update Code
To update your code to use the new property:

1 Rewrite your fileEnsembleDatastore read functions into one new function that reads
variables of all types. (See Create and Configure File Ensemble Datastore for an example of such
a function.)

2 SetDataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcnto []
to clear them.

6-3

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/fileensembledatastore.html#mw_63c43a6b-8d3f-4819-bbca-79704eeb2e67

R2018b

6-4

3 Set ReadFcn to the new function.

currentValue syntax of predictRUL not recommended
Still runs

The following syntax of the predictRUL command is not recommended:
estRUL = predictRUL(md1l,currentValue,threshold)

For a trained degradation model md1l, this syntax estimates the remaining useful life (RUL) based on
the current measured value currentValue of a condition indicator. A more reliable way to estimate
RUL for degradation models is to update the model with each successive measurement of the
condition indicator using the update command. Then, use the updated model to estimate the RUL.

Update Code

Suppose that you store successive condition indicator measurements in an array TestData. The
array contains measurements at regular intervals at least up to the time currentTime for which
currentValue is the condition indicator measurement. To update your code, replace:

estRUL = predictRUL(md1l, currentValue,threshold)
with the following code:
for t = 1:CurrentTime
update(mdl,TestData(t,:))
end
estRUL = predictRUL(md1l,threshold)

For an example, see the predictRUL reference page.

https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.predictrul.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.update.html
https://www.mathworks.com/help/releases/R2018b/predmaint/ref/lineardegradationmodel.predictrul.html

R2018a

Version: 1.0

New Features

R2018a

7-2

Survival, similarity, and time-series models for remaining useful life
(RUL) estimation

Remaining useful life (RUL) is the expected value of time to failure conditional on the history of the

component known by sensor measurements and auxiliary output information. Predictive Maintenance
Toolbox provides similarity models, degradation models, and survival models for RUL estimation. For
more information on these types of RUL estimation, see Models for Predicting Remaining Useful Life.

Time, frequency, and time-frequency domain feature extraction
methods for designing condition indicators

A condition indicator is a feature of system data whose behavior changes in a predictable way as the
system degrades or operates in different operational modes. Such features are useful for
distinguishing normal from faulty operation or for predicting remaining useful life. Predictive
Maintenance Toolbox supplements existing functionality in MATLAB and Signal Processing Toolbox™
with additional functions that can be useful for designing condition indicators. For more information,
see Condition Indicators for Monitoring, Fault Detection, and Prediction.

Managing and labeling of sensor data imported from local files,
Amazon S3, Windows Azure Blob Storage, and Hadoop Distributed File
System

You may have collected measurements on systems using sensors for healthy operation or faulty
condition and stored them in local files, cloud storage platforms or in distributed file systems. You can
organize, read, and manage such measured data using the fileEnsembleDatastore object and use
it for designing your predictive maintenance algorithms. For more information, see File Ensemble
Datastore With Measured Data.

Managing and labeling of simulated machine data from Simulink
models

Instead of data from physical systems, you may have a Simulink® model that represents a range of
healthy and faulty operating conditions. The generateSimulationEnsemble function helps you
generate such data from your model. Then use the simulationEnsembleDatastore object to
organize, read, and manage the data for designing your predictive maintenance algorithms. For more
information, see Generate and Use Simulated Data Ensemble.

Examples for developing predictive maintenance algorithms for
motors, gearboxes, batteries, and other machines

This release includes the following examples on data generation, fault detection and diagnosis, and
RUL prediction:

* Data Generation

+ Using Simulink to Generate Fault Data
* Multi-Class Fault Detection Using Simulated Data
* Fault Detection and Diagnosis

https://www.mathworks.com/help/releases/R2018a/predmaint/ug/models-for-predicting-remaining-useful-life.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/condition-indicators-for-condition-monitoring-and-prediction.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/fileensembledatastore.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/file-ensemble-datastore-with-measured-data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/file-ensemble-datastore-with-measured-data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/generatesimulationensemble.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ref/simulationensembledatastore.html
https://www.mathworks.com/help/releases/R2018a/predmaint/ug/generate-and-use-simulated-data-ensemble.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Use-Simulink-to-Generate-Fault-Data.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_db08c0b9-5f28-4c59-bf98-819057e183c6.html

Rolling Element Bearing Fault Diagnosis

Fault Diagnosis of Centrifugal Pumps using Steady State Experiments
Fault Diagnosis of Centrifugal Pumps using Residual Analysis

Fault Detection Using an Extended Kalman Filter

Fault Detection Using Data Based Models

Detect Abrupt System Changes Using Identification Techniques

Prediction

Similarity-Based Remaining Useful Life Estimation

Wind Turbine High-Speed Bearing Prognosis

Condition Monitoring and Prognostics Using Vibration Signals
Nonlinear State Estimation of a Degrading Battery System

https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Rolling-Element-Bearing-Fault-Diagnosis.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_1c9f340b-a341-4162-9bb1-d8094591600f.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/_mw_050e1288-24dd-4ab7-a70d-b5e6441fcfdc.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Fault-Detection-Using-an-Extended-Kalman-Filter.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Fault-Detection-Using-Data-Based-Models.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/Detect-Abrupt-System-Changes-Using-Identification-Techniques.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/similarity-based-remaining-useful-life-estimation.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/wind-turbine-high-speed-bearing-prognosis.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/condition-monitoring-and-prognostics-using-vibration-signals.html
https://www.mathworks.com/help/releases/R2018a/predmaint/examples/nonlinear-state-estimation-of-a-degrading-battery-system.html

	R2021a
	Diagnostic Feature Designer: Import data using an updated interface with more flexible options
	Diagnostic Feature Designer: Preselect signals and spectra to process
	Diagnostic Feature Designer: Use tooltips to obtain the history of processing and data sources for derived variables
	Ensemble Datastores: Use the subset function to extract ensemble members that you specify from an existing ensemble into a new ensemble
	Remaining Useful Life (RUL) Prediction: Generate C/C++ code using MATLAB Coder for the prediction, update, and restart of an RUL prediction that is based on a degradation model
	Live Editor Tasks: Interactively define fault frequency bands and extract spectral metrics
	RUL Examples: Predict RUL using artificial intelligence

	R2020b
	R2020a
	Diagnostic Feature Designer: Generate MATLAB code in the app

	R2019b
	Live Editor Tasks: Interactively perform phase space reconstruction and extract signal-based condition indicators
	Spectral Analysis: Define frequency bands and extract spectral features
	Prognostic Ranking in Diagnostic Feature Designer: Rank features to determine best indicators of system degradation in Diagnostic Feature Designer
	Machine-Specific Rotation Speeds: Filter TSA signals using machine-specific rotation speeds in Diagnostic Feature Designer
	generateSimulationEnsemble: Control display of simulation progress when generating a simulation ensemble

	R2019a
	Diagnostic Feature Designer: Interactively extract, visualize, and rank features from measured or simulated data for machine diagnostics and prognostics
	Gear Condition Metrics: Extract standard gear condition indicators from time-synchronous averaged signals
	fileEnsembleDatastore: Specify list of ensemble datastore file names

	R2018b
	Feature Selection Metrics: Evaluate features to determine best indicators of system degradation and improve accuracy of remaining useful life predictions
	Features for Rotating Machinery: Extract the residual, difference, and regular signals from a time-synchronous averaged signal to generate diagnostic feature
	fileEnsembleDatastore Object: Read all variable types from ensemble member while loading file only once
	Ensemble Datastore Objects: Read multiple ensemble members in one operation
	fileEnsembleDatastore Object: Create ensembles of files with multiple file extensions
	Functionality being removed or changed
	DataVariablesFcn, IndependentVariablesFcn, and ConditionVariablesFcn properties of fileEnsembleDatastore will be removed
	currentValue syntax of predictRUL not recommended

	R2018a
	Survival, similarity, and time-series models for remaining useful life (RUL) estimation
	Time, frequency, and time-frequency domain feature extraction methods for designing condition indicators
	Managing and labeling of sensor data imported from local files, Amazon S3, Windows Azure Blob Storage, and Hadoop Distributed File System
	Managing and labeling of simulated machine data from Simulink models
	Examples for developing predictive maintenance algorithms for motors, gearboxes, batteries, and other machines

